
Methods to bicluster validation and comparison in
microarray data

Rodrigo Santamarı́a, Luis Quintales, and Roberto Therón

University of Salamanca

Abstract. There are lots of validation indexes and techniques to studyclustering
results. Biclustering algorithms have been applied in Systems Biology, princi-
pally in DNA Microarray analysis, for the last years, with great success. Nowa-
days, there is a big set of biclustering algorithms each one based in different
concepts, but there are few intercomparisons that measure their performance. We
review and present here some numerical measures, new and evolved from tra-
ditional clustering validation techniques, to allow comparisons and validation of
biclustering algorithms.

1 Introduction

Biclustering is one of the main options to find structure in gene microarray data. In the
last years, lots of biclustering methods have been proposed[10]. Authors apply different
procedures to individually validate them. Also, with the growing number of algorithms,
its comparison is now being addressed [12]. Though not an optimal algorithm exists,
these comparisons help to understand biclustering behavior and make easier the choice
of the bests algorithms in each context.

Several measures for validation exist in clustering area, but they are usually not ap-
plied for biclustering methods. The authors that have treated more in deepness compari-
son methodologies for biclustering are Prelic et al. [12] and Turner et al. [14]. Validation
and comparison are made by external indices. Non-biological indices as sensitivity and
specificity are used when information of clustering is known, usually in synthetic data
where biclusters are embedded. Only constant and additive biclusters are treated, as
they are the most extended. Biological indices are used whenno information intrinsic
to the data is known. Internal and relative indices are seldom used because biclustering
concepts are hard to adapt to clustering indices.

In this paper, we review these validation and comparison techniques, explaining
the adaptations done in literature and proposing some otheradaptations to biclustering
characteristics. Specially, internal and relative index application to optimize input pa-
rameters and coherence measures have been developed. In Section 2, we discuss the
different kinds of biclusters offering measures to determine each type. Section 3 covers
the use of internal, external and relative indices, reviewing the most used and extending
some of them to biclustering context. Section 4 makes a briefapplication of measures
discussed in Section 2 and 3 on two biclustering algorithms.Finally, Section 5 presents
the conclusions and future work.



2 Bicluster structure

2.1 Bicluster classification

A bicluster can be defined as ‘a subset of objects (rows or columns) that jointly respond
across a subset of other objects (columns or rows)‘. In bioinformatics, rows usually refer
to genes and columns to experiments or organism conditions.Madeira and Oliveira [10]
classify biclusters depending on what is considered for ’jointly responds’:

– Constant value bicluster (C): all elements have exactly the same value (µ). Ele-
ments of constant biclusterB = [bi j] with n rows andm columns are defined as

bi j = µ (1)

– Coherent value bicluster (H): row and/or column variations are somehow related.
This relationship may be additive (H+), multiplicative (H×) or by sign (H±). In
case ofH+ andH×, each row and/or column differs from others in an additive or
multiplicative factor (eqs. 2 and 3, respectively). In caseof H±, it is just a qualita-
tive rule of change in tendency (α andβ are binary vectors representing increasing
or decreasing respect to another row or column –such as 1 or -1–, but it’s not im-
posed any quantitative restriction onri j, ci j variations)

bi j = µ + αi + β j (2)

bi j = µαiβ j (3)

bi j = (b(i−1, j) + αiri j)+ (b(i, j−1) + ci jβ j) (4)

– Coherent evolution bicluster (E): expression levels are first mapped to labels under
certain criteria, such as order or proximity.

The above definitions can be applied to rows, columns or both,but measures are
usually used in both dimesions.C biclusters are almost ideal, so algorithms searching
for C biclusters usually treats ’constant’ as a range of near values by a mapping with
coherence evolution.

This bicluster classification presents overlaps. For example, C biclusters on rows
and columns (Crc) are included inC biclusters on rows (Cr)andC biclusters on columns
(Cc). C biclusters of any type are included inH+ biclusters and overlap withH× biclus-
ters.H± includes them all (Fig. 1). This will be important when comparing biclustering
algorithms that search for different kinds of biclusters.

C is the most used group because of direct interpretation in biological data.H+ bi-
clusters, representing more subtle relations in data are the second group in references.
H× andH± are rarely used, being their biological relevance difficultto justify or inter-
pret.
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Fig. 1.A) Bicluster sets. Each of the sets is internally divided in row, column and both dimensions
biclusters of the corresponding type. B) Heatmaps of different biclusters: 1)Crc bicluster, 2)
Crc bicluster with high noise, 3)Cr bicluster, 4)Cc column constant, 5)H+ bicluster, 6)H×

bicluster and 7)H± bicluster. 5),6) and 7) become, after row/column transformation,Cr and/or
Cc biclusters 3) and 4).

2.2 Coherence measures

Having in mind the different groups of biclusters, we can define measures that de-
termine how constant or how (additive, multiplicative, sign) coherent is our bicluster.
Biclustering algorithms define internally what is considered coherent, but not always
under an specific measure or value. Coherence measures can beused to define synthetic
biclusters for testing or to check if the results over real data fits the bicluster definition
of the algorithm. Constancy by rows of biclusterB (Cr(B)) and by columns (Cc(B)) are
easy to measure by means of Euclidean distance
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Overall constancyCrc(B) can be derived fromCr(B) andCc(B):

Crc(B) =
nCr(B)+ mCc(B)

n + m
(7)

The average measure for all the biclusters found by an algorithm is the weighted
mean of the measure for each bicluster. These measures, traditionally used to determine
cluster compactness will give bad scores for coherent biclusters. To measure coherency,
an incremental treatment of the data can be applied to make them ’constant’, then ap-
plying above formulas to the transformed biclusterB′ = [b′i j]. In case ofH+:

b′i j = bi j −b(i−1) j (b0 j = 0) (8)

b′i j = bi j −bi( j−1) (bi0 = 0) (9)



That way, as seen in Fig. 1b,H+ bicluster becomesCr and/orCc bicluster, and
can be measured by eqs. 5, 6 and 7. A similar transform can be done with H× using
division instead of substraction, but now there is necessary to include an exception to
avoid divisions by zero:

b′i j = bi j/b(i−1) j (b0 j = 1) (10)

b′i j = bi j/bi( j−1) (bi0 = 1) (11)

Finally, H± has a similar treatment:

b′i j = 1⇔ bi j > b(i−1) j, b′i j = −1 otherwise. (b0 j = 1) (12)

b′i j = 1⇔ bi j > bi( j−1), b′i j = −1 otherwise. (bi0 = 1) (13)

Proximity to zero on all these measures points that the bicluster has the correspond-
ing coherence property. There is no limit in the value they can take, but values above
1.5 usually tells us that coherency is lost (see Section 4 forsome practical cases).

3 Validation Indices

Clustering validation indices are divided into three categories [7]: external, internal and
relative. External indices measure the similarity betweenclustering results and a priori
knowledge. Internal indices compare the intrinsic structure of data with cluster results.
Internal indices are much harder to apply to biclustering than external indices because
much of the internal concepts (such as compactness or separation) are not applying to
biclusters, where overlapping and coherent variations areusual. Finally relative indices
compare different configurations of input parameters and cluster results, trying to find
optimal or stable parameters for a given input data.

In the context of biclustering, external validation is mainly used, preferring bio-
logical indices to traditional ones. Internal and relativeindices are seldom used, be-
cause of the non trivial task of adapting biclustering concepts as overlapping and bi-
dimensionality to clustering indices.

3.1 Biological external indices

Biological knowledge used in validations are usually gene annotations as those of Gene
Ontology (GO) [2] or KEGG [8]. We will call them external indices because imply in-
formation external to the data. Given a biclusterB, we get all (in example) GO terms
annotated to any of the genes inB and then apply a statistical significance test to deter-
mine if each term appearance is relevant.

Biclustering algorithms presented in [12, 3] use GO and/or KEGG enrichment. Other
biological knowledge applied in the same way than annotations is related with Tran-
scription Regulatory Networks (TRNs). A TRN is a directed acyclic graph where nodes
are genes, and an edge between geneA and geneB means that geneA encodes for a tran-
scription factor protein that transcriptionally regulates (activate or repress) geneB. In
this case it is considered the number of genes connected in our bicluster or the average



distance between genes in it [12]. It’s expected that the number of genes connected will
be greater and the average distance lower than in random biclusters, which is checked
with a significance test. Another interesting characteristic to check is the number of
network motifs (substructures that appear in TRNs [11]) that are included in a bicluster,
but it is seldom used in bibliography.

Although useful for the objective of knowledge discovery, biological significance
has a major disadvantage as a validation method: biologicalknowledge is not complete.
When a bicluster does not group known GO/KEGG annotations, or connected genes
in a TRN, it may be because it’s a bad bicluster, but also because information about
TRN connectiveness or GO annotations are not complete. Justas an example, E. coli
TRN grew from 424 genes and 577 interactions in 2002 [13] to 1278 genes and 2724
interactions in 2004 [9]. Also statistical significance tests are controversial [6, 1].

3.2 Non-biological external indices

Non-biological external indices are used to check if bicluster results match with previ-
ous knowledge of biclusters in the data. They also can be usedin comparing biclusters
of two different biclustering methods. There are two main techniques to generate exter-
nal indices: two-matrix and single-matrix techniques.

In case of two-matrix technique, two binary matrices are built, P and R, of size
n×n, wheren is the number of objects (genes or conditions) of our data.P represents
the grouping of objects in the a priori partition andR the grouping in our results. Frow
those two matrices, indices are defined, as Rand index, Jaccard coefficient, Minkowski
measure or Folkes and Mallows measure [5]. Though the adaptation of two-matrix tech-
nique to bi-dimensionality is not very difficult, the concept of overlapping is harder to
express with this method, so single matrix is preferred.

Single-matrix technique builds a unique bicluster matrixM of orderp×r wherep is
the number of biclusters inP andr is the number of biclusters inR. mi j will determine
the similarity between the biclusteri of P and the biclusterj of R. A measure of this
similarity is F1 index proposed by Getz et al. [4] and adapted to biclusters byTurner
et al. [15].F1 is based in the proportion of biclusteri present in biclusterj (sensitivity
or module recovery of biclusteri) and the proportion of biclusterj present in bicluster
i (specificity or relevance of biclusteri). Note that the sensitivity of biclusteri for j is
the specificity of biclusterj for i, and the same with the specificity ofi for j, that is the
sensitivity of j for i. If gx is the number of genes inX , cx the number of conditions inX
andnx = gxcx; sensitivity, specificity andF1 are defined as:

sensitivity =
(gA∩B)(cA∩B)

nB
(14)

speci f icity =
(gA∩B)(cA∩B)

nA
(15)

F1(A,B) =
2(gA∩B)(cA∩B)

nA + nB
(16)



When results inR reveal exactly a priori partitionP, M will be (if computed with
Eq. 16) a square (p× p), symmetric matrix withmi j = 1 if i = j andmi j = m ji < 1
otherwise. FromM we can get two measures of the overall matching betweenR andP.

S(R,P) =
1
r

r

∑
i=1

maxp
j=1(mi j) (17)

S(P,R) =
1
p

p

∑
j=1
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i=1(mi j) (18)

S(R,P) gives overall bicluster relevance of biclusteringR, while S(R,P) gives the
module recovery capacity of biclusteringR.

3.3 Internal indices

Internal indices compare intrinsic information about datawith the biclustering results.
In this case, no a priori information further than the raw data is available. Internal in-
dices are not as precise as external indices, but they are important when a priori infor-
mation is not available. To avoid the use of internal indices, synthetic data with known
structure are built to validate biclustering methods. Whenapplied to real biological data
where no a priori information is known, biological tests areused.

An internal index is computed from two matrices just as non-biological external
indices. In this case, matrixP contains information about proximity between expression
levels of genes or conditions. Now,Pi j = Pji = distance(oi,o j). Again two pairs of
matrices are needed for biclustering, one whereoi are genes and another for conditions.
Pi j is greater whenoi and o j are different.R can be built as described for external
indices, but inversed so higher values correspond to objects not grouped together. For
exampleCi j = 1/(1+k), wherek is the number of times that objectsi and j are grouped
together.Ci j will be in (0,1], being 1 if never grouped together and downing to near 0 if
usually grouped. This two matrices can be compared with normalized Hubert statistic:

Γ̄ (C,P) =
1
m ∑n−1

i=1 ∑n
j=i+1(Pi j − µp)(Ci j − µc)

σpσc
(19)

wheren is the number of objects in the matrix, andm = n(n−1)/2. µp, µc are the
mean of the matrices andσp, σp its variances. As with other measures,Γ̄ index must
be computed for the two pair of matrices, then combining as inEq. 7.

Γ̄ index and other similar indices, as cophenetic coefficient are less precise than
external indices. For example, Jain and Dubes [7] survey different drawbacks of cophe-
netic coefficient, estimating than even a value of 0.9 will not be enough to assert that
there is a good correlation betweenP andR.

3.4 Relative indices

Relative indices try to determine the best choice of our algorithm parameters on each
particular data set. If we want to compare two algorithms against the same data set, we
want to compare its best parametrization for this data set.



However this is a difficult task because of the heterogeneityof the biclustering algo-
rithms and its input parameters. Relative indices use to be external or internal indices,
depending on the availability of a priori information from the data. Independently of
the index, the procedure is to run the algorithm with different parameter configurations,
and compute the index for each one. The parameter configuration with best index is
selected as optimal for the data set. Selection of the different parameter configurations
is up to the user and is key for the optimal search, so it must represent all the range of
possibilities, avoiding deviations.

In clustering, another approach to find the best configuration is to find an stable
number of clusters, retrieved by a great number of configurations. From them, we take
the one in the middle of the range, or the one with the best value for a given index. This
method is also used in some biclustering validations, usually to find stability when the
algorithm has pseudo-random behaviour [3], but not to find optimal initial parameters.

4 Application

4.1 Algorithms

We have applied some of the performance measures discussed to two biclustering al-
gorithms, Bimax [12] and improved Plaid Model of Turner et al[15]. Bimax is one
of the most compared biclustering methods, by means of non-biological and biologi-
cal validation. For example, in [12], non-biological measures are used, but only based
in gene dimension because hierarchical clustering was one of the methods compared.
Also, in the mentioned comparison only default parameters are used for each algorithm,
no parameter optimization is done. Turner plaid model was tested by their authors with
different synthetic data sets with three to ten (overlappedin different proportions) bi-
clusters. Turner and Bimax algorithms have never been compared in bibliography.

Both methods have been implemented in R according to the specifications in the
corresponding bibliography. Bimax density of 1s against 0sis proved in a range from
1% to 10% (steps of 1%). Turner’st1 andt2 parameters are proved ast1 = t2 in a range
from 0.4 to 0.8, with steps of 0.1.

A) B)
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Fig. 2. A) Overlapped constant overexpression biclusters. A low noise has been added to biclus-
ters. Overlapping degree is the same in rows and columns. B) Constant and coherent overex-
pression biclusters with random noise. Note how noise affects the structure of biclusters, being
constancy undistinguishable from coherency with high noise.

4.2 Data sets

Two sets of synthetic data matrices 100x50 are built. First set of matrices will contain
two constant biclusters with overlapping degrees from 0% to100%, with 10% incre-



ments. Second set of matrices have two non-overlapping biclusters, one constant and
the other one additive coherent, with normal distribution random noise. Distribution
deviation increases from 0 (no noise) to 1, with 0.1 increments. All matrices have a
random noise background (see Fig. 2).

4.3 Methods

The proposed test will briefly apply the techniques discussed. First, we will try to find
the best parameter choice for each biclustering algorithm in each data set, by means of
F1 measure (comparing against known biclusters) and ofΓ̄ (comparing against proxim-
ity matrix). That way, we can compare the performance ofΓ̄ as relative index against
an a priori knowledge technique (F1). Biological significance tests has left out of the
scope of this discussion because studies with them are more extended and do not use
the measures reviewed here. For known biclusters, constantand coherence measures
will be also computed, analyzing its consistency against noise and overlap.

4.4 Results

Fig. 3a-1 presents the mean of sensitivity and specificity (SS) of the results of the best
configuration given byF1 andΓ̄ (or Hubert statistic).F1 will give the best configura-
tion at all, whileΓ̄ gives the best configuration supposing a priori informationis not
available. Also, the meanSS for all the tested parametrizations is given. With the ap-
propriate parameter choice, Bimax finds a high percentage ofrow and columns present
in biclusters embedded, even (sometimes) finding the exact biclusters without finding
spurious biclusters (SS = 1). Performance is lower when overlapping is around 50%,
being higher when biclusters are nearly separated or are almost the same.SS value of
parameter configuration chosen bȳΓ measure is obviously worse, but still have better
configurations than average. Turner algorithm has lower performance than Bimax. The
pruning phase included to improve plaid model fails when trying to prune overlapped
parts of the biclusters.

Overlapping effect on biclusters measures is represented in Fig. 3a-2. Because of
additive overlapping, intersecting expression levels arehigher than non-intersecting, so
constant structure is lost with overlapping, in favor of coherent structure.

In Fig. 3b-1 we can see how Bimax performance is sensible to noise when it exceeds
0.4 deviations. Bimax discretization threshold is the responsible of this downgrading.
On the other hand, Turner algorithm is not affected by noise,recovering data even in the
most noisy cases. Again,̄Γ statistic does not give the best configuration in each case,
but is better than average. About constancy and coherence measures (Fig. 3 b-2), the
measures increase with noise, revealing how structure is eventually lost. Additive coher-
ent bicluster has lower (better)H+ measure thanC measure, as expected. Note howH+

measures increase with noise until, eventually, surpassing C measure and coinciding
with Bimax performance downgrade.



Fig. 3.a) Effect of overlapping in the algorithm and the biclusters. 1) BestSS measure achieved by
usingF1 andΓ̄ statistics along with the mean ofSS for all the proven configurations. 2) Variation
in the measures of constancy and coherency with changes in the overlap degree. b1) and b2) As
a1) and a2), but representing the effect of the noise in the algorithms and biclusters, respectively.

5 Conclusions and future work

Due to the variation and drawbacks of validation indices, the best way to analyze biclus-
tering performance is to use them exhaustively, generatinga framework that will define
bicluster specific measures (relative, internal and external indices), data type definitions
(constant, coherent), benchmark algorithms and example (real and synthetic) data sets.

Though external indices use is extended, our approach to relative and internal index
application is new. That helps in automatic optimization ofbiclustering input pareme-
ters, a task seldom considered and critical for obtaining the highest performance. Data
type definition exists as discussed, but only constant biclusters have been mathemati-
cally measured. We present an approach to measure coherencebiclusters by using con-
stant measures and transformation of data matrices.



External and internal indices used as relative indices havebeen applied to two bi-
clustering algorithms to prove their consistency and capability to generate information
about performance and bicluster behavior against noise andoverlap, main problems of
biclustering on microarrays. The search of the optimal input parameters for biclustering
algorithms through̄Γ internal index outperforms the static use of recommended values.

Coherence measures have been also proposed and applied, proving helpful in typi-
fying biclusters. Normalization of these measures must be done to help in comparisons
between them. We expect to exhaustively prove all these measures (analyzing and com-
paring existing biclustering algorithms) and present newer ones in future works.
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