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Abstract. Microarray technology produces large amounts of information to be
manipulated by analysis methods, such as biclustering algorithms, to extract new
knowledge. All-purpose multivariate data visualization tools are usually not enough
for studying microarray experiments. Additionally, clustering tools do not pro-
vide means of simultaneous visualization of all the biclusters obtained.
We present an interactive tool that integrates traditionalvisualization techniques
with others related to bioinformatics, such as transcription regulatory networks
and microarray heatmaps, to provide enhanced understanding of the biclustering
results. Our aim is to gain insight about the structure of biological data and the
behavior of different biclustering algorithms.

1 Introduction

Biclustering methods are techniques that discover internal structure of data in a non-
supervised way. In the last few years they have been extensively applied to bioinfor-
matics, specially to extract knowledge from microarray experiments. The first effort
was done by Cheng and Church [5]; many others are surveyed in [13, 23]. Nowadays,
still new biclustering methods are developed [15, 4].

On the other hand, there are tools covering different aspects of biological and statis-
tical analysis. BicAT [2] is a great tool focused in biclustering algorithms, implementing
some of the most important ones along with traditional k-means and hierarchical clus-
tering. BicAT presents the results as ordered lists of biclusters, that can be examined
individually through heatmaps and parallel coordinates.

Expander [20, 18] is also a tool that implements clustering and biclustering meth-
ods. Although Expander implements less biclustering algorithms than BicAT, it has a
great number of visualizations: heatmaps and boxplots to study microarray data matri-
ces, dendrogram+heatmap visualization of hierarchical clustering results [7], clustering
PCA displays and bicluster heatmaps. The PCA display may be the most interesting
view because it allows a quick understanding of gene structure (coloring points de-
pending on the cluster which groups them).

gCluto [16] makes use of more advanced information visualization techniques. The
microarray data matrix is again represented by a heatmap butnow the interaction with
the representation is allowed, so rows and columns can be expanded, combined or
grouped by hierarchical clustering. gCluto also uses 2D projections of clusters but in
a 3D space called mountain maps, where perimeter, height, slope and color identify
different properties of each cluster.



The Rank-by-feature framework [17] is another powerful tool for hierarchical and
k-means clustering. In this case a great level of interaction is allowed, under a high num-
ber of views: heatmaps, dendrograms, histograms, scatter plots and parallel coordinates.
Finally, Cytoscape [19] is a very different tool, focused inanalyzing biomolecular in-
teraction networks with an optimal degree of interaction (zooming, searching, changes
of layout, coloring, database querying and lots more).

Although the aforementioned tools deal with clustering and/or biclustering results,
they do not focus on the simultaneous visualization of them.BicAT visualizes bicluster-
ing results individually, and comparison must be done through navigation of lists, which
makes difficult the discovery of relationships among biclusters. Expander and gCluto
present different solutions to this but for clustering results. The representation of multi-
ple biclustering results of one or more biclustering methods has not been treated.

To overcome these limitations, we have developed a visual analysis tool that allows
the simultaneous display of all the biclustering results ofdifferent methods along with
linked views of related information, such as microarray expression levels and transcrip-
tion regulatory networks (TRNs). That way, a full frameworkto help in decision making
has been implemented and tested.

The following sections are organized as follows. Section 2 exposes the visualization
techniques implemented in the tool: definition of the structure, data, displays, user inter-
actions implemented and linkages between views. Section 3 presents a full example of
the use of the framework with a synthetic microarray data experiment. Finally, Section
4 draws the conclusions achieved and establishes future lines for expanding the tool.

2 Bicluster Visualization

The framework manages different data sources and display them by using a number
of visualizations techniques. All the visualizations are interconnected by means of a
session manager to allow flow of data and interactions among views (see fig. 1). Three
data sources are distinguished. The most important is the Microarray Data Matrix, that
contains information about gene names, condition details and gene expression levels.
Following, TRN network, represented as an XML standard graph, provides information
about genes and relationships between them (up or down-regulation). Finally, bicluster
results are presented as an structured file with informationabout the type of biclustering
algorithm, the dimension of the biclusters and the genes andconditions grouped by
them.

These data are visualized by means of five main visualizationtechniques: heatmaps,
parallel coordinates, scatter plots, bubble maps and transcription graphs (Fig. 2). The
first three visualizations represent microarray expression levels as multivariate data
where each gene or sample is a variable and each condition or experiment is a dimen-
sion. The tool also allows the presentation of this data as a textual table. The bubble map
represents biclustering results while the transcription graph represents a TRN of the or-
ganism studied in the microarray. For description purposes, we will usegene to address
to a variable andcondition for dimensions. We will haven genesG = {g1, ...,gn} and
m conditionsC = {c1, ...,cm}. A biclusterB is a subset ofnb genes (Gb = {g′1, ...,g

′
nb})

andmb conditions (Cb = {c′1, ...,c
′
mb}).



Fig. 1. Diagram of the structure of the framework. Three data sources can be used in the visual-
ization of different displays by means of a session manager that interconnects them all.

2.1 Microarray data visualizations

Heatmaps (Fig. 2c) are the most usual representation of microarray data. In order to in-
spect genes or conditions individually, the heatmap implements bifocal distortion [12]
by rows and/or columns, as well as zoom and navigation through expression levels.
Selection of rows, columns or individual expression levelsare linked to the other visu-
alizations of the framework.

Parallel coordinates (fig. 2d) representG as a set of lines ofm-dimensional points.
Selection of ranges of values on any condition can be done. Conditions also can be
reordered as desired.

2.2 Bubble map

Bubble maps (fig. 2b) are related to gCluto mountain maps, butunlike gCluto maps,
this visualization makes use of two dimensions to avoid 3D overlapping and improve
time performance, allowing simultaneous comparison of a large number of biclustering
results from different methods.

Each biclusterB is represented as a circle (bubble), where color identifies the biclus-
tering method that computed it. The radius of the shape refers to the size of the bicluster,
computed asnbmb. The transparency depends on bicluster homogeneity, defined as the
inverse of the within variation described in eq. 1:

Wb =
1
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nb

∑
i=1

√

√

√

√

mb

∑
j=1

(ā j −ai j)2 (1)

whereai j is the expression level of the genegi under the conditionc j andā j is the
mean of the expression levels of the genes grouped inB for condition j.

The position is determined by the genes and conditions grouped. The horizontal
coordinate depends on conditions while the vertical coordinate depends on genes. To
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Fig. 2. Overview of the framework. Data belongs to the example discussed in Section 3. The
most relevant visualizations are (a) TRN network, (b) bubble map, (c) microarray heatmap and
(d) parallel coordinates.

compute the positions, biclusterB, grouping gene subsetGb and condition subsetCb, is
mapped to the multidimensional pointsxb andyb as in eqs. 2 and 3.

xb = (p1, p2, ..., pn) | pi = 1⇔ gi ⊂ Gk, pi = 0 otherwise (2)

yb = (p1, p2, ..., pm) | p j = 1⇔ c j ⊂ Gk, pi = 0 otherwise (3)

These two points ofn andm coordinates are projected to one dimension with either
a classical metric [8] or non-metric [10] multidimensionalscaling. This way bothy-axis
andx-axis components of the representation for each bicluster are obtained. Therefore,
biclusters at the same horizontal/vertical line are expected to share genes/conditions,
although this is not always precise due to the reduction of dimensionality, that obviously
loses information.

The result is a set of distributed, colored, sometimes superposed circular shapes,
where an analyst can easily identify biclusters distant from the trend, differences be-
tween biclustering methods or other relevant knowledge (Figs. 2b, 3a). The user can
select any number of biclusters, a change that is transferred to other views to highlight
the corresponding genes and/or conditions. Bubbles can be dragged to change their
positions in case the user wants to reorder them using any other criterium.



2.3 TRN visualization

In a TRN, nodes represent the set of all genesG, while a directed edge fromgi to g j

means thatgi encodes for a transcription factor protein that transcriptionally regulates
g j [14]. It is important to distinguish at least two types of edges: activation and repres-
sion edges. When a gene up-regulated connects with an activation edge to another gene,
this one is favored to up-regulation. If it connects with a repression edge, will be favored
to down-regulation.

In our framework, TRNs have been represented as directed acyclic graphs led by
forces (Fig. 2a). Nodes are labeled with gene names and edgesare colored in dark or
light grey depending if the interaction is activation or inhibition, respectively. To avoid
edge cluttering, they are displayed with splines instead ofstraight lines. We also imple-
ment a gene search by name. The interacting forces display the nodes so the overlapping
of nodes and edges is minimized.

2.4 Linked Visualizations

All the visualizations are linked so changes in a view are propagated to the rest of views
(Fig. 3). The ability of visualizing changes in a representation because of interaction
with another representation helps to reveal patterns. On the other hand, linkage limits
the screen area because it has to be divided by different visualizations. All linkages
implemented are bidirectional, so flow between visualizations can be followed at user’s
demand.

In our case, the usual flow of information that communicates views are subsets of
genes and/or conditions. Thus, a selection of a node in the TRN will imply the flow of
the gene represented by that node to other views, highlighting biclusters that contain
this gene or focusing on the gene in the microarray heatmap, for example. The user can
configure which visualizations to monitor simultaneously and if they are linked or not,
thus adapting screen areas to her necessity.

3 Case Study

3.1 Example Dataset

In order to make the discussion simpler, we have chosen a reduced synthetic example
obtained by SynTReN [6] from Shen-Orr’s E. coli TRN [21]. From this network, with
424 nodes, SynTReN builds a synthetic TRN with 200 nodes, 190nodes based in Shen-
Orr’s definition and 10 random nodes, without biological basis. SynTReN will also
generate a microarray data matrix simulating 10 experiments, each one repeated two
times.

We apply three different biclustering algorithms to the microarray data matrix: Bi-
max [15], Plaid models [11] and Spectral biclustering [9]. We have chosen methods that
differ in its interpretation of biclusters, so it is expected that their results will be quite
distinct.
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Fig. 3. Example of how linkage works. A Bimax (red) bicluster is selected in bubble map (a)
and this provokes gene highlighting in TRN (b), reordering of rows and columns in heatmap (c)
and highlighting of lines and reordering of axis in parallelcoordinates (d). Similar flows can be
followed by interaction with other visualizations.

3.2 Objectives

The framework has been designed in such a way that analysis will naturally follow
the Information Visualization Mantra: ”Overview first, zoom and filter, details on de-
mand” [22]. This way, it will start with a general overview ofour problem, to continue
with filterings by biclusters, genes and conditions. With these flows, supported by linked
views, we will prove the potence of the framework to analyze the mentioned dataset re-
garding the following: 1) detecting relationships betweenthe two replications of each
experiment, 2) determining characteristics in the biclusters computed by different meth-
ods, 3) checking if related groups in TRN are grouped by biclusters and 4) detecting
random genes, and determining if they appear in the biclusters computed.

Additionally, we want to discover: 1) new relationships between genes not related
in the TRN, 2) biclusters deviated from the trend and 3) differences and similarities of
the three biclustering methods and its performance for thisexample.



3.3 Overview

A simple overview using different visualizations gives interesting information. The
TRN layout (fig. 2a) shows how genes are related according to existing biological
knowledge. A group of random genes is easily detected as a separate graph at the
bottom-left. The bubble map (fig. 2b, 3a) shows biclusters for Bimax (red), Plaid model
(green) and Spectral (blue). With just a glance, we can tell than Plaid model gives big-
ger, heterogeneous (transparent) biclusters (due to some extent by a reported problem of
this algorithm [24]), while Spectral biclustering gives very small ones and are displayed
linearly, revealing the checkerboard structure of Spectral biclustering. Bimax returns
middle-size, homogeneous (solid) biclusters. Also, biclusters deviated from the trends
and groups of neighbor biclusters are easily detected, possibly worth a deeper study
with the tool. The microarray heatmap and parallel coordinates are not very helpful on
an overview, being the expression level information overwhelming without previous fil-
tering. Finally, a scatter plot comparing expression levels of different replications of the
same experiment (fig 2, bottom left) reveals its correlation.

3.4 Bicluster-oriented analysis

Once the overview has given us a context to draw preliminary analysis, deeper ex-
ploration is needed. This usually starts with biclusters, displayed with different colors
depending on their method of biclustering. Interesting biclusters because of their homo-
geneity, size or position are salient in the bubble map visualization and can be selected,
provoking changes in other visualizations that give us insight about what is grouped in
the bicluster and why.

The microarray heatmap will reorder and highlight genes andconditions on the bi-
cluster, giving a quick way to identify what is in the bicluster. Also heatmaps, along with
parallel coordinates, help to understand why these genes and conditions are grouped
together by the algorithm in terms of their expression levels. For example, when se-
lecting a Bimax bicluster as in fig. 3, genes highlighted in heatmap and parallel coor-
dinates present high and constant expression levels through the corresponding condi-
tions. These are two of the features of Bimax algorithm, and therefore the information
helps us to confirm that the results are correct or (if the biclustering method is not well
known) to learn about the biclustering behavior. On the other hand, when a bicluster is
selected, the corresponding genes highlight in the TRN network. Usually, as in fig. 3b,
groupings are reflected in previously biological relationships (left bunch of genes) but
in some cases previously unrelated genes are grouped, as it is the case of the gene at the
right of the figure. Thanks to the force layout of the TRN graph, genes unrelated (very
separated) can be easily detected.

Various biclusters can be selected simultaneously, thus highlighting in other visu-
alizations the intersecting genes and conditions. This is interesting when clouds of bi-
clusters are detected in the bubble map.

3.5 Gene and condition-oriented analysis

Studying the biclusters, some genes appear grouped withoutdirect (or obvious indirect)
relation in the TRN. These genes could be actually related orbe misgrouped by biclus-



tering algorithms. If that kind of genes are grouped by a large number of biclusters, the
probability of them being really related increases, justifying further analysis. The same
is valid with conditions.

To analyze these interesting objects, we can change the scope and flow of the nav-
igation through the tool and start by selecting particular genes. Picking those genes in
the TRN will highlight all the biclusters that groups them together. If a high number
of biclusters is highlighted, it is possible that the genes are truly related and we have
discovered relevant knowledge (Fig. 4).

Fig. 4. Genes namedspec andnr f ABCDEFG are grouped together in seven biclusters from two
different biclustering methods, without known biologicalevidence. The framework helps to dis-
cover it quickly.

4 Conclusion and future work

A framework to study biclustering methods in terms of its results by different visu-
alizations, including biological knowledge with TRNs, is presented. The use of this
framework, along with benchmark datasets and statistical and biological validation
techniques can shed more light on performance of biclustering methods. It also will
help analysts in the study of the usually large number of biclusters given by bicluster-
ing algorithms, decreasing analysis time and helping in thedetection of relevant results.
The tool discussed has relevant advantages over other current tools:

– Visualization of all biclusterssimultaneously by means of the bubble map. This
visualization also allows the representation of biclusters from different biclustering
algorithms simultaneously. Only gCluto and Expander implements simultaneous
visualization of simple clusters form a single method, without interaction.

– Incorporation of biological information from transcription regulatory networks to
the visualization of microarray data and biclusters, allowing their communication.



This is an unusual feature, only implemented by Expander (bymeans of visualiza-
tion of transcription binding sites in gene sequences) and Cytoscape (coloring of
TRNs by expression levels).

– Simultaneous visualization and linking between differentviews. This is a key con-
cept to increase the user’s insight on the problem, witnessing the changes that in-
teraction with a visualization causes in other views.

– Use of statistical measures such as coherence and variance by means of bubble map,
thus including another relevant aspect of biclustering analysis: validation metrics.

Aside for the aforementioned advantages, new paths to improve the tool are opened:

– The bubble map, although useful, is based in projections that reduce dimensionality
at the cost of discarding details. The result is that the overlapping of bubbles does
not exactly convey the real overlapping of biclusters. Another technique is being
currently studied to solve this.

– More biological knowledge will be, specially network motifs [14] identified in
TRNs and GO [1] and MIAME annotations [3], increasing the details-on-demand.

– Gene and bicluster-oriented analysis discussed here are just two ways of revealing
new knowledge. Testing of the tool by analysts will reveal new requirements in
both visualization and genomic/transcriptomic areas.
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