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Abstract. Many applications in computer graphics require fast and ro-
bust collision detection algorithms. The problem of simulating motion
in an articulated chain has been well studied using both dynamic and
kinematics techniques. This paper describes an efficient method for ob-
stacle representation in the configuration space (C-space) for articulated
chains. The method is based on the analytical deconstruction of the C-
space, i.e., the separated evaluation of the C-space portion contributed
by the collisions of each link. The Deconstruction method is not limited
to particular kinematic topologies and allows good collision detection
times. The systematic application of a simple convolution of two func-
tions describing each link in the kinematic chain and the workspace,
respectively, is applied. The proposed method can naturally face the
evaluation of high-dimensional C-spaces, since only non-colliding config-
urations are considered for the evaluation of the next link in the chain.

Key words: collision detection, interference tests, motion planning

1 Introduction

This paper presents a novel and efficient method for the evaluation of possible
collisions of any articulated body in an environment of obstacles.

Collision detection is a classical problem in computer graphics, robotics, man-
ufacturing, animation and computer simulated environments. The goal of colli-
sion detection (also known as interference detection or contact determination) is
to automatically report a geometric contact when is about to occur or has actu-
ally occurred. In many of these application areas, collision detection is considered
a major computational bottleneck. This problem has been widely studied; [1],[2]
and [3] provide recent surveys.

The motion of articulated bodies has been a subject of considerable literature
using both dynamic and kinematics techniques. While inverse kinematics models
are computationally less expensive, dynamics models achieve a greater degree of
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realism due to underlying physical basis. On the other hand, inverse kinematics,
owing to kinematic constrains, enable more direct animations than in purely
dynamic models. Usually the emphasis is on simulating an articulated figure
as realistic as possible. Although realism is a worthy goal, designing interactive
environments requires efficient performance [4]. With this goal in mind, Bandi
and Thalmann [4] propose a configuration space approach for efficient animation
of human figures, where the configuration space is splitted into various regions,
mapped onto 2D, and a search is carried out to avoid obstacles. [5][6] also perform
a configuration space search in order to achieve collision avoidance.

The concept of configuration space was introduced by Lozano-Pérez [7] and
has been widely used in motion planning. The goal of motion planning is to
generate a collision-free path for a robot. Thus, collision-free planners must be
able to perform some kind of geometric reasoning concerning collision detection
between the robot and the obstacles [8]. In general, the configuration of a robot is
given by a set of parameters, or degrees of freedom, that determine its location
and orientation. The space defined by the ranges of allowed values for these
parameters is usually called configuration space (C-space).

An obstacle in C-space (C-obstacle) is defined as the connected set of config-
urations where a given mobile object intersects with an obstacle in workspace.
C-obstacle generation can be viewed as a further generalization of the static
interference and collision detection problems: here objects are not tested for in-
terference at a particular configuration nor even along a given parameterized
trajectory, but rather at all possible configurations in the workspace. Thus, once
C-obstacles are obtained, all information concerning interferences is captured[1].

Concisely, we propose a fast method for the evaluation of the configura-
tion space of articulated bodies (kinematic chains) based on the analytical de-
construction of the C-obstacles [9], that can be further exploited in computer
graphics and animation. Some benefits of the proposed method are: it is valid
for any kind of structure (including highly articulated bodies), the evaluation
of obstacles is performed locally for every element of the articulated chain, the
anticipation of collisions due to each link permits to diminish the portion of
evaluated space and the method is inherently parallel.

2 Evaluating C-Obstacles as a Convolution

In this section, the method proposed by Curto et al. in [10] is reviewed, as it is
the basis for the method presented in this paper.

The representation of the C-obstacles is proposed based on the integral of
the product of two functions: one that represents the kinematic chain A and
another one that represents the obstacles in the workspace, B. W will designate
the workspace and C the C-space. Thus,

Definition 1. Let A : C × W → R be the function defined by

A(q, x) =

{
1 if x ∈ A(q)
0 if x 6∈ A(q)

(1)



where A(q) is the subset of W that represents the chain at configuration q.

Definition 2. Let B : W → R be the function defined by

B(x) =

{
1 if x ∈ B
0 if x 6∈ B

(2)

where B is the subset of W formed by the obstacles.

Using both A and B, a new definition for calculating C-obstacles is proposed:

Definition 3. Let CB : C → R be the function defined by

CB(q) =

∫

A(q, x)B(x)dx ∀q ∈ C, ∀x ∈ W (3)

The region CBf is defined as the subset of C that verifies

CBf = {q ∈ C/CB(q) > 0} (4)

The previous expressions were defined without considering any specific pa-
rameterization of W and C.

Now, a representation of W and C is given by selecting two frames FW and
FA for the workspace and for the kinematic chain, respectively, where FW is fixed
and FA is attached to the kinematic chain. In this way, a point x ∈ W is given by
(x1, x2, · · · , xn) where n is the workspace dimension, and a configuration q ∈ C
is represented by (q1, q2, · · · , qm) that specify the position and orientation of FA

respect to FW , where m is the dimension of C. Thus, the expression (3) becomes

CB(q1, · · · , qm) =

∫

A(q1, · · · , qm, x1, · · · , xn)B(x1, · · · , xn)dx1 · · · dxn (5)

3 Superposition Principle of C-obstacles

In this paper, an articulated body is considered as a kinematic chain. In this
way, a body A is viewed as a set of r rigid objects. The kinematics of this chain,
i.e., the movement restrictions imposed by the joint to each element, Ai —the
degrees of freedom, DOFs—, would determine some regions of the C-space.

This principle is the basis of the evaluation of the C-space for bodies that
consist of several links connected by means of different types of joints.

Considering that a body consists of r rigid objects, the resulting C-obstacles
will follow the Superposition Principle:

Theorem 1. Let A be an articulated body formed by r links A1, . . . ,Ar. If

CB1, . . . ,CBr are, respectively, the C-obstacle regions for the A1, . . . ,Ar objects

in the space where the obstacle B is projected, then, the C-obstacle CB due to

B for the articulated body A can be obtained as

CB =

r⋃

k=1

CBk (6)



The expression (6) reflects the fact that the union of these subsets equals
the configuration space for A. The idea of C-obstacles superposition is the key
principle that enables the deconstruction approach.

4 The Deconstruction Method

The Deconstruction method tries to independently evaluate portions of the C-
space in order to find the C-obstacles due to each link in the kinematic chain.

4.1 Applying the Superposition Principle

Taking into account (6), the calculation of CB for a body A, a kinematic chain
of r links, is done through the union of all the CBk related to each of the links
of the chain. The computation of every C-obstacle region must be done through
the evaluation of the associated CBk functions.

CBk(q1k
, · · · , qsk

), ∀k ∈ {1, . . . , r} (7)

with {q1k
, · · · , qsk

} ⊆ {q1, · · · , qm}, where {q1, · · · , qm} are the DOFs associated
to the articulated body A. That is, for the k-th element only the subset of
configuration variables associated to it are considered, and, analogously to (5),
each of the CBk(q1k

, · · · , qsk
) functions is evaluated as follows

∫

Ak(q1k
, · · · , qsk

, x1, · · · , xn)B(x1, · · · , xn)dx1 · · · dxn (8)

4.2 Choosing the Frames

When solving the integral (8), the function Ak(q1k
, · · · , qsk

, x1, · · · , xn), repre-
senting the articulated body, is difficult to evaluate, due to its dependency on
all of the DOFs related to itself and to the previous links in the chain. Thus, we
will try to reduce this difficulty by choosing the proper frames.

In order to do that, let’s consider the body formed by the kinematic chain
of figure 1. As one can see, following the Denavit-Hartenberg method [11], a
frame is associated with each link, placing the origin at the end of the link; the
orientation of axes depends on the position and orientation of the link.

Following the Denavit-Hartenberg procedure, the Deconstruction method
proposes to use the frame determined by the previous link for the k-th element.
Thus, for link 1 the frame FA0

—which coincides with the workspace frame,
FW — is used; similarly, for the k-th link, frame FAk−1

will be used (figure 1).
Now, if we have a look to Ak(q1k

, · · · , qsk
, x1, · · · , xn), the expression we are

evaluating, it can be written as follows

Ak(q1k
, · · · , quk

︸ ︷︷ ︸

DOF(1,...,k−1)

, q(u+1)k
, · · · , qsk

︸ ︷︷ ︸

DOFk

, x1, · · · , xn) (9)



Fig. 1. Frames in the kinematic chain of an articulated body

where {q1k
, · · · , quk

} are the degrees of freedom associated to the elements pre-
ceding the k-th element, whose DOFs are

{
q(u+1)k

, · · · , qsk

}
.

At this point, the position and orientation of the element Ak is expressed
related to the frame FA0

. The position, just like the frame FAk−1
, is determined

by the associated degrees of freedom of the previous links in the chain, that is
to say, some of the parameters related to each Ai —previous elements— in that
subchain, (ai, αi, di and θi, the Denavit-Hartenberg parameters).

Thus, if the position and orientation of the element Ak are expressed taking
as origin the frame FAk−1

, its evaluation will be much simpler. An homogeneous
transformation T is needed to perform this operation.

Definition 4. Let k−1
0 T be the transformation that permits to move the frame

FA0
to such point that it will coincide with FAk−1

.

It is important to point out that this homogeneous transformation depends
on the configuration parameters related to the previous elements in the chain,
that is to say, k−1

0 T = f(q1k
, · · · , quk

). At this point, the position and orientation
of the link Ak, expressed related to the frame FAk−1

, will only depend on its
associated degrees of freedom, that is,

{
q(u+1)k

, · · · , qsk

}
.

However, this homogeneous transformation has a consequence: it will be nec-
essary to express the workspace as a function of the new frame, FAk−1

:

B′(x′

1, · · · , x′

n) =k−1
0 TB(x1, · · · , xn) (10)

In this way, the evaluation of (9) is equivalent to the following one

A′

k(q(u+1)k
, · · · , qsk

, x′

1, · · · , x′

n) (11)

Finally, (8), which is used to calculate the C-obstacle portion pertaining to
the element Ak, becomes



∫

A′

k(q(u+1)k
, · · · , qsk

, x′

1, · · · , x′

n)B′(x′

1, · · · , x′

n)dx′

1 · · · dx′

n (12)

Now, after the proper frame is chosen, as it can be seen in (12), it is possible
to study individually each one of the links.

4.3 Choosing the Coordinate Functions

Kavraki [12] and Curto [10] propose the simplification of the C-space calculation
by using of the Convolution theorem (and the Fast Fourieer Transform). We shall
now expose how this is applicable inside the new proposed formalism by means
of the introduction of a coordinate functions change.

As demonstrated in [10], it is sufficient to choose the proper coordinate func-
tions, (ξ1, · · · , ξn), that will permit to find one or more relationships between
some of the configuration variables and some of the coordinate functions, which
will allow to find the convolution.

Thus, a new function, Ā′

k, is introduced; the idea is to find a simpler func-
tional dependency in function A′

k, in such a way that element Ak becomes inde-
pendent of a subset of

{
q(u+1)k

, · · · , qsk

}
, depending only on

{
q(v+1)k

, · · · , qsk

}
.

Having this new function Ā′

k, (12) will be defined as

∫
longA longB dξ1 · · · dξn

longA=Ā′

k(0,···,0,q(v+1)k
,···,qsk

,ξ1−q(u+1)k
,···,ξv−qvk

,ξ(v+1)k
,···,ξn)

longB=B′(ξ1,···,ξn)
(13)

which leads to a function Ā′

k that depends only on
{
q(v+1)k

, · · · , qsk

}
. Now, for

variables
{
q(u+1)k

, · · · , qvk

}
the following convolution product appears.

∫
(Ā′

k(0,···,0,q(v+1)k
,···,qsk

)
∗B)(ξ1,···,ξvk

)(ξ(v+1)k
,···,ξn) dξ(v+1)k

···dξn

(14)

where subindices (ξ1, · · · , ξvk
) denote that the convolution product is calculated

for all of the values of these variables.

5 Case study: deconstruction of an arm in 3D

For simplicity’s sake a simple example of a 3-DOF arm is considered.
Let’s consider the following articulated arm, A, consisting of 3 rigid objects,

A1, A2 and A3, moving in R3 by means of revolution joints. The three DOF
are (θ1, θ2, θ3) ∈ [−π, π). Being the waist (θ1), shoulder (θ2) and elbow (θ3).

Choosing the Frames The frames are chosen following the Denavit-Hartenberg
method, with the objective of obtaining certain symmetries that will simplify the
calculation of the C-obstacles. FW and FA0

frames have their origins located at
the intersection point of the two elements A1 and A2.



Fig. 2. A 3-DOF arm in 3D workspace

Choosing the Coordinate Functions and CB calculation Together with
the frame choosing step, this will produce great simplification in the evaluation.

Indeed, the degrees of freedom associated to the second element are the
two turning angles in the three-dimensional space, so the election of spherical
coordinates (r, ϕ1, ϕ2) within [0, l2 + l3]× [−π, π)×

[
−π
2 , π

2

)
(with l2 and l3, the

longitudes of the second and third element, respectively) is the best option, since
θ1 will be related to ϕ1 and θ2 to ϕ2.

Following the deconstruction idea, we want to solve separately the group of
collisions associated to each one of the three links of the chain.

CB = CB1 ∪ CB2 ∪ CB3 (15)

this way, three functions (expression 7) must be evaluated, and, according to
expression 8, this can be done as follows

CB1(θ1) =

∫

A1(θ1, r, ϕ1, ϕ2)B(r, ϕ1, ϕ2)drdϕ1dϕ2 (16)

CB2(θ1, θ2) =

∫

A2(θ1, θ2, r, ϕ1, ϕ2)B(r, ϕ1, ϕ2)drdϕ1dϕ2 (17)

CB3(θ1, θ2, θ3) =

∫

A3(θ1, θ2, θ3, r, ϕ1, ϕ2)B(r, ϕ1, ϕ2)drdϕ1dϕ2 (18)

where functions Ak and B of the formalism proposed in section 4 are parame-
terized for this case as q = (θ1, θ2, θ3) and x = (r, ϕ1, ϕ2).

At this point, we have considered that element A1, the waist, is only respon-
sible of another degree of freedom for the shoulder, but we are only interested in
the collisions of the arm. This way, expression 16 is null; in other case it should
be computed. The evaluation of other CB follows.

Use of Convolution for CB2 calculation In the first place, the relationships
of ϕ1 with θ1 and ϕ2 with θ2 are important, since we can introduce the following



expression.

A2(θ1, θ2, r, ϕ1, ϕ2) = A2(0, 0, r, ϕ1 − θ1, ϕ2 − θ2) (19)

and changing the notation for element A2 at zero configuration (θ1 = 0, θ2 =
0) we have

A2(0, 0, r, ϕ1 − θ1, ϕ2 − θ2) = A2(0,0)
(r, ϕ1 − θ1, ϕ2 − θ2) (20)

With this simple change an enormous advantage is gained, since the evalu-
ation of the function A2 is reduced to considering the element at configuration
(θ1 = 0, θ2 = 0), instead of evaluating for each value θ1, θ2 ∈ [−π, π).

So CB2(θ1, θ2) calculation is carried out by the following integral

∫

A2(0,0)
(r, ϕ1 − θ1, ϕ2 − θ2)B(r, ϕ1, ϕ2)drdϕ1dϕ2 (21)

And, considering the convolution of both functions defined in R3 over the θ1

and θ2 variables, it is obtained

CB2(θ1, θ2) =

∫

(Ā2(0,0)
∗ B)(ϕ1,ϕ2)(r, θ1, θ2)dr (22)

where subindex (ϕ1, ϕ2) means that the convolution product of functions Ā2 and
B is carried out for all the values of variables (ϕ1, ϕ2) ∈ [−π, π), and function
Ā2(0,0)

is defined by

Ā2(0,0)
(r, ϕ1, ϕ2) = A2(0,0)

(r,−ϕ1,−ϕ2) (23)

Finally, the convolution theorem can be applied, so now the expression 22 is
calculated with the inverse Fourier transform (over two dimensions) of

∫

F
[
Ā1(0,0)

(r, θ1, θ2)
]

(ϕ1,ϕ2)
F [B(r, θ1, θ2)](ϕ1,ϕ2)

dr (24)

Using homogeneous transformation (D-H method) for CB3 Taking
into account that we are working on spherical coordinates, the frames of figure
2, where a new frame F ′

W is established, which is equal to FA2
, are the best

election.
The idea is to perform the transformation of the workspace points related

to FW , to the ones related to FA2
(F ′

W ) (see figure 2); that is, change from
(r, ϕ1, ϕ2) coordinates to (r′, ϕ′

1, ϕ
′

2) coordinates.
Using the Denavit-Hartenberg method, we have p′ = 0

2T
−1 · p, and after the

proper calculations we obtain the following expressions:

r′=
√

l22+r2
−2rl2(Cθ1Cθ2Cϕ1Cϕ2+Sθ1Cθ2Sϕ1Cϕ2+Sθ2Sϕ2)

ϕ′

1=artg
(

−r(Cθ1Sθ2Cϕ1Cϕ2+Sθ1Sθ2Sϕ1Cϕ2−Cθ2Sϕ2)
r(Cθ1Cθ2Cϕ1Cϕ2+Sθ1Cθ2Sϕ1Cϕ2+Sθ2Sϕ2)−l2

)

ϕ′

2=artg

(

z′√
x′2+y′2

)



with

x′=r(Cθ1Cθ2Cϕ1Cϕ2+Sθ1Cθ2Sϕ1Cϕ2+Sθ2Sϕ2)−l2

y′=−r(Cθ1Sθ2Cϕ1Cϕ2+Sθ1Sθ2Sϕ1Cϕ2−Cθ2Sϕ2)

z′=r(Sθ1Cϕ1Cϕ2−Cθ1Sϕ1Cϕ2)

Furthermore, since the elbow is a revolution articulation with the turning
axis parallel to that of the shoulder articulation (figure 2), within the sphere
covered by (r, ϕ1, ϕ2), only the obstacles within the disk of l3 radius, i.e. the
longitude of the third element, and ϕ′

1 angle in [−π, π], can be obstacles for A3.
In this situation, it is more efficient to transform only those points that are in
the disk of interest, that is to say, with ϕ1 = θ1 (related to original frame) and
r′ < l3 (related to the transformed one). This concept is illustrated in figure 3.

Fig. 3. Any point with ϕ1 = θ1 pertains to the disk of interest

With the introduced frame change, instead of working in the 3D space, we
work in the plane, and so, now the expression 18 can be evaluated as

CB3(θ1, θ2, θ3) =

∫

A′

3(θ3, r
′, ϕ′

1)B
′(r′, ϕ′

1)dr′dϕ′

1 (25)

Use of Convolution for CB3 calculation As it can be seen, since there is a
relationship between θ3 and ϕ′

1, expression 25 can be written as

CB3(θ1, θ2, θ3) =

∫

A′

3(0)
(r′, ϕ′

1 − θ3)B
′(r′, ϕ′

1)dr′dϕ′

1 (26)

that can be simplified, applying the convolution theorem, and obtain the final
expression:

F [CB3(θ1, θ2, θ3)] =

∫

F
[

Ā′

3(0)
(r′, θ3)

]

ϕ′

1

F [B′(r′, θ3)]ϕ′

1
dr′ (27)



It must be noted that, on the contrary to the previous expression, where
it was necessary to perform bidimensional Fourier transforms, in this case the
Fourier transforms are one-dimensional, since it is only necessary to sweep disks.

Finally, note that, in order to use the Deconstruction method, a discretization
must be performed.

6 Conclusions

A fast and new general method for the evaluation of the configuration space of
any kinematic chain was presented. The possibility of simplification of the C-
space evaluating process by means of the application of a simple and repetitive
operation for each link in the kinematic chain was shown. As case study, the
proposed method was applied to a 3-DOFs arm, showing its potential for collision
detection of articulated bodies such as human figures.
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