
Configuration Space of 3D Mobile Robots: Parallel Processing

R. Theron V. Moreno B. Curto F. J. Blanco
theron@usal.es vmoreno@abedul.usal.es bcurto@abedul.usal.es jblanco@abedul.usal.es

Departamento de Informática y Automática
Universidad de Salamanca

Salamanca, Spain

Abstract

In this paper we present an analysis that indentifies
opportunities of introducing parallelism in the calcula-
tion of the configuration space. When the Convolution
Theorem is used for this evaluation, two levels have
appeared within the basic operation of the algorithms
and another one for the employed computational tool
(Fast Fourier Transform, FFT).

The method has been applied to robots moving on
a plane in a 3D workspace. As a result, an optimal
reduction of the calculation time is obtained: the par-
allel implementation, working on a tetra-processor, is
more than three times faster than the sequential one.
Finally, it can be added that the proposed design for the
parallel algorithm is general and easily implementable
for articulated robots.

1 Introduction

Currently, the field of robotics is pursuing the cre-
ation of autonomous robots. To achieve this objective,
it is indispensable to process a set of tasks [9] with dif-
ferent degrees of knowledge. In order to face the strong
computational load derived from the execution of all
the invloved procedures, the utilization of distributed
processing techniques is needed [1].

One of the intelligent tasks to be carried out is path
planning [9], that looks for a route which permits the
robot to move from an initial configuration to the de-
sired one, without collisions with the objects found in-
side its workspace. Among the different existing tech-
niques, global planning appears, that considers a to-
tal knowledge of the environment or workspace of the
robot. It is simpler to obtain these paths in the config-
uration space (C-space) than in the workspace of the
robot, since in the first one the position and orienta-

tion of the robot can be defined by a single point [10].
The present work will be centered in the seek of the
free C-space, that later will be used for planning robot
movements. Or the opposite, configurations that pro-
duce a collision will be called C-obstacle. The evalua-
tion of the C-space supposes a problem with a massive
computational cost; furthermore, it has strong calcu-
lation time restrictions. This results in the necessity
of incorporating advanced processing techniques [7].

In spite of the significant advances in the process-
ing speed, sequential processors are very far from pro-
viding sufficient computing capacity for the intelligent
robotic systems. On the other hand, modern VLSI
technology provides an unique opportunity to tighten
this separation by means of parallel processing [2].

Among all the parallel paradigms, message-passing
upon point-to-point connections appears as a powerful
valid solution for both shared memory systems and
distributed memory systems [4], and is one of the most
commonly used.

Previous works ([3], [11]) have demostrated how
the intratability of the C-space problem would bene-
fit from the use of parallel and distributed computing
techniques. In this paper, it is the calculation of the
C-space itself that is studied in order to find the best
design and implementation of the algorithm.

The remainder of this paper has been divided into
the following sections: In the second one, a general
method for the evaluation of the configuration space
of robots is analyzed looking for its inherent paral-
lelism. In the third section, a sequential algorithm for
the computing of the robot C-space is presented for
a given case study. Next, the fourth section shows
the parallel implementation with detailed master and
slaves functions. To finalize, the main results and con-
clusions are presented.

2 Parallel C-space Evaluation

In this section, we are going to present the mathe-
matical formalism that was used for the computation
of the C-space. Next, the opportunities for introduc-
ing concurrent calculus will be studied.

2.1 Mathematical formalism

In [5] a mathematical formalism for the C-obstacle
evaluation is proposed where two functions are de-
fined: one describing the robot, A; and another one
describing the obstcales, B.

Let W and C be the workspace and the configura-
tion space of a robot, respectively.

Definition 1. Let A(q) be the set of points of W
that represents the robot A at configuration q.

The function A : C ×W → [0, 1] is defined by

A(q, x) =
{

1 if x ∈ A(q)
0 if x 6∈ A(q) (1)

Definition 2. Let B be the subset of W consti-
tuted by the obstacles. The function B : W → [0, 1]
is defined by

B(x) =
{

1 if x ∈ B
0 if x 6∈ B (2)

Definition 3. Let CB : C → R be the function
defined by

CB(q) =
∫

A(q, x)B(x)dx ∀q ∈ C (3)

The C-obstacle region CBf is defined as

CBf = {q ∈ C/CB(q) > 0}

In order to know whether the robot A at a given
configuration q collides with the obstacles or not, it is
necessary to evaluate (3). A point x of W will be ex-
pressed by the coordinates (x1, · · · , xn), where n is the
dimension of W . A configuration q will be represented
by (q1, · · · , qm), that specify the position and orienta-
tion of the robot. So, CB(q1, ·, qm) function can be
calculated as,

∫
A(q1, ·, qm, x1, ·, xn)B(x1, ·, xn)dx1, ·, dxn (4)

It is difficult to compute the previous integral; if the
adequate coordinate funtions in W and C are chosen,

this expression can be calculated in a simpler way [5],
by means of a convolution product of two functions.
Thus, if A′ has a lighter functional dependency, being
the robot A independent of a subset of parameters
(q1, ·, qr), when a relationship with some coordinate
functions (x1, ·, xr) is found, the convolution product
appears. Now, thanks to the Convolution theorem,
the evaluation of the integral can be done using the
Fourier transform. Then, F [CB] will be calculated as

∫
F

[
A′

(0,·,0,qr+1,·,qm)(q1, ·, qr, xr+1, ·, xn)
]
(x1,·,xr)

F [B(q1, ·, qr, xr+1, ·, xn)](x1,·,xr) dxr+1 · dxn (5)

2.2 Going Parallel

In expression (4), the opportunity of carrying out
calculations in parallel was already observed: the ex-
ecution of Nm integrals of dimension n will be neces-
sary, being N the chosen discretization. But, in ex-
pression (5), the calculation is reduced to the evalua-
tion of Nm−r operations. On the other hand, the inte-
gration, that is performed for the spatial coordinates
where there is no convolution (xr+1, · · · , xn), provides
a new opportunity of parallelization.

Thus, in the integral (5) three levels of parallelism
can be found:

• Fourier Transform level: the well known Fast
Fourier Transform (FFT) algorithm, which is in-
herently parallel is the computational tool to cal-
culate this level.

• Spatial variable level: for those variables where
the convolution can’t be found (xr+1, ..., xn), it
is necessary to perform an integration which may
be processed in parallel.

• Configuration variable level: in the case of
some configuration variables (q1, ..., qr), the con-
volution must be performed; trivial paralleliza-
tion exists for configuration variables where there
is no convolution (qr+1, ..., qm).

The three levels previously stated are valid for any
robotic structure, and different solutions may take ad-
vantage of one, two or three levels of parallelism at
a time, resulting in faster C-space evaluation algo-
rithms.

3 Case Study: 3D Mobile Robot

A good example of application of the previous for-
malism is the evaluation of the configuration space
for a mobile robot, which moves on a 3D workspace
partially occupied by obstacles. In [8] [12] an algo-
rithm is proposed for calculating a bitmap that repre-
sents the C-space of a mobile robot as the convolution
of two bitmaps (one representing the obstacles in the
workspace and one representing the robot).

The expression for evaluating the C-space for this
robot can be followed from (4) and (5). Let be (xr, yr, θr)
the parameters that define a configuration q, being
(xr, yr) the coordinates of the center of the robot and
θr its orientation. The function CB(xr, yr, θr) would
be given by∫

A(xr, yr, θr, x, y, z)B(x, y, z)dxdydz

The convolution product of two functions defined in
R3 is obtained, but only over x and y; it is necessary
to make the integral of this product over z. So,

CB(xr, yr, θr) =
∫

(A(0,0,θr) ∗B)(x,y)(xr, yr, z)dz

For each orientation θr of the robot, a slice CB(xr, yr, θr)
is obtained. Each one is calculated by adding the con-
volution products of A(0,0,θr) and B for each plane
z = constant, from z = 0 to z = robot height. Apply-
ing the convolution theorem the C-obstacles are ob-
tained by the inverse Fourier transform of∫

F
[
A(0,0,θr)(xr, yr, z)

]
F [B(xr, yr, z)] dz

The algorithm proposed in [5] for the 3D mobile
robot is presented in figure 1, where W is the bitmap
of the workspace; A(0,0,θr) represents the robot bitmap
for a specific orientation θr; and the C-space is ob-
tained in the calculated bitmap, CB.

As it can be observed, an iterative calculation of the
C-space slice pertaining to each robot orientation θr is
needed. The number of necessary iterations depends
on the chosen discretization (N) to cover the interval
robot orientations. For the spatial variable (z), where
there is no convolution, an accumulation of convolu-
tion products is performed (Only the products up to
the highest point of the robot are needed).

For each coordinate z
Construct W (xr, yr, z), placing ’1’ at its limits
Compute two-dimensional F [W (xr, yr, z)]

For every values of orientation θr

PT = 0
For each coordinate z

Construct A(0,0,θr)(xr, yr, z)
Compute two-dimensional F

[
A(0,0,θr)

]
Let P = F [W] · F

[
A(0,0,θr)

]
Accumulate at PT

Let IP (xr, yr) = F−1 [PT] (the inverse FFT)
Let CB(xr, yr, θr) = 1 iff |IP (xr, yr)| > 0

Figure 1: Sequential algorithm

4 Parallel Algorithm Implementation

In this case the three levels of paralelism stated
are present: configuration variable level, the algorithm
performs a series of independent operations, one for
each robot orientation; spatial variable level, each ori-
entation needs to accumulate the convolution products
for each plane z, that can be done in parallel; Fourier
transform level, which is always present.

Several designs that take advantage of the inherent
paralellism has been proposed in [13]; however, due to
the available test environment, a tetra-processor ma-
chine, we used a simplified proposal: the work load is
big enough as to be more efficient to exploit only one
level (Figure 2); otherwise, the performance would suf-
fer from the cost and complexity of communications.

Figure 2: Parallel design at configuration variable level

According to [6], the master-slave paradigm is a
suitable choice, since a master process is going to dis-

tribute tasks to each of the slave processes and, grad-
ually, receive the slaves calculations for building the
final result (Figure 2). In this case we understand by
task the necessary calculations to obtain a slice of the
C-space (Figure 2), and by grain size the number of
orientations that constitute a task. This means an ad-
equate load balance if as many slaves as the available
number of processors are utilized, taking into account
that the calculation time of the tasks is over the em-
ployed time in the exchange of information. Previ-
ous works ([13]) taught that the best performance is
achieved when working with fine grain, i. e., just one
orientation.

Figure 3: Basic scheme for the C-space parallel calcu-
lation

In figure 2 the essential operations that carry out
the master and the slaves processes are shown. The
master takes charge of calculating the preliminary data
that slaves need, it directs the execution, it marks the
finish of all the processes, and it builds the final re-
sult. On the other hand, each slave calculates the
C-space slice pertaining to the orientation assigned by
the master and provides the result.

4.1 Master Process

In the algorithm of figure 1 it is observed that in
each iteration, the Fourier transform of the workspace
bitmap is utilized, that is, it should be available for
each slave before any calculation. Therefore, the mas-
ter should obtain the bitmap of the workspace and
evaluate its Fourier transform. For that, it needs to
calculate the work table for the execution of the FFT.
It must be stressed that the slaves will also need this

table for the execution of FFTs. All this information,
calculated only once, is sent to each of the slaves.

From this moment the master is going to commu-
nicate to each slave the task that has to be calculated,
receive the result (the slice of the corresponding C-
space) and assign a new task. Finally, it asks them
to finish when there is no more orientations to calcu-
late. During this process the master is going to build
a tridimensional array representing the C-space.

4.2 Slave Process

In order for the slave to calculate each portion of the
C-space, it must know which orientation is involved
(determined by the master with the number of task).
Thus, the slave builds the needed robot bitmap for
that orientation and a z plane and obtains its FFT
(Figure 3). Later, it carries out the point-to-point
product of this FFT with the transformed workspace
that the master has provided. This procedure is re-
peated a number of times as determined by the highest
point of the mobile robot, and the results are added
(i.e., the accumulation of the spatial variable level,
which in this case, as stated before, it is not exploited).
Next, it applies the inverse transformation to the ac-
cumulated result to obtain the portion of the C-space.
This intermediate result is what the slaves, in turn,
send to the master, expecting another task to be as-
signed or an end of execution signal.

5 Results

A Silicon Graphics Origin 200 computer with four
MIPS R10000 processors and 768 Mbytes of memory
has been used to validate the implementation. We
have used the MPI (Message Passing Interface) tool
to implement the parallel algorithm.

In figure 4 a complex scenario is shown with several
polyhedral obstacles and the studied 3D mobile robot,
using bitmaps with a resolution of 128x128x128. The
corresponding C-space is shown in Figure 5 where a
small set of free collision configurations appears in-
side a big C-obstacle; the holes in the big C-obstacle
correspond to the configurations of the robot where
it is positioned between the two column-like obstacles
or between a column-like obstcale and the bridge-like
one.

The best results have been obtained for the case
of one master process and four slaves processes when
working with fine grain, i.e., just one orientation (re-
ducing the average computation time to less than a
third part).

−50

−25

0

25

50
−50 −40 −30 −20 −10 0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

90

100

Y
X

Z

Figure 4: A set of obstacles and the 3D mobile robot

In Tables 1, 2 and 3, the obtained calculation times
(in seconds) are shown for the execution of the fine
grain parallel algorithm and the sequential algorithm
for different resolutions and distinct heights (number
of pixels in the bipmap) of the robot.

Sequential Parallel Robot height Speedup
0.99 0.73 5 1.36
3.34 1.23 20 2.72
7.30 2.40 45 3.04
10.51 3.21 64 3.27

Table 1: Execution times (s) for 64 x 64 resolution

It can be observed a growing tendency in the speedup
when increasing the resolution from 64x64 to 128x128;
most likely the trend comes from communications penal-
ties when the time dedicated to pure calculation is
small, in the case of a resolution of 64x64 in the bitmaps.
However, Table 3 shows a smaller performance due to
memory availability. On the other hand, when the
robot is higher, that is, there are more slices to calcu-
late, the speedup is also better.

In Figure 6 it can be seen the parallel execution of
the algorithm for five processes running on four pro-
cessors: one master and four slaves. A color code is
used: waiting periods are represented in dark grey;
working periods are shown in light grey; and white is
used for the time dedicated for MPI functions. The
first bar (number 0) is the master and the others (1 to
4) are the slaves. First, it can be observed in all pro-

−50
−25

0
25

50
−50 −40 −30 −20 −10 0 10 20 30 40 50

0

1

2

3

4

5

6

Y

T
he

ta

X

Figure 5: C-obstacles for the 3D mobile robot

Sequential Parallel Robot height Speedup
14.30 5.22 10 2.74
52.81 15.21 40 3.47
85.05 23.45 64 3.63
164.06 44.34 128 3.70

Table 2: Execution times (s) for 128 x 128 resolution

cesses an initial white period followed by a dark grey
period; this is the required time for the intialitations
and for all the slaves to receive its first task. After
that, the master is nearly all the execution dark grey;
after sending a new orientation to a slave, it must wait
for another slave to finish, receive the slice, and assign
new task. On the other hand, slaves are most of the
execution light grey, which means that they are always
working, stoping only for comunicating the partial re-
sults.

As Figure 6 and resulting speedups reflect, the per-
formance is optimal: slave processes are working most
of the time and the master process is waiting for the

Sequential Parallel Robot height Speedup
252.45 76.67 15 3.29
376.54 107.51 30 3.50
792.70 226.77 64 3.50

Table 3: Execution times (s) for 256 x 256 resolution

finalization of the assigned tasks.

Figure 6: MPI execution: 1 master and 4 slaves

6 Conclusions

A design and implementation of the algorithms to
evaluate the robot C-space in parallel has been pre-
sented. The algorithms are based on the evaluation
of the equations expressed within a general mathe-
matical formalism. As a practical application, a three
dimensional mobile robot is considered. Limitations
of test environment prompted development and im-
plementation of a solution optimizing at the configu-
ration variable level. Different experiments have been
carried out in which the resulting speedups are very
acceptable.

The presented case study provides reasonable re-
sults that could be extrapolated to more complex robotic
structures, so they can hopefully be designed on the
lines of the parallel algorithm studied in this paper.

Acknowledgements

We want to acknowledge the partial support given
by the JCyL through SA02-00F research project.

References

[1] Valmir C. Barbosa. An Introduction to Dis-
tributed Algorithms. The MIT Press, 1991.

[2] G. Bilardi, S. Hornick, and M. Sarrafradeh. Opti-
mal vlsi architechtures for multidimensional dft

. ACM Comp. Architecture News, 19(1):45–52,
1991.

[3] D. Challou, M. Gini, and V. Kumar. Parallel
search algorithms for robot motion planning. In
Proceedings of IEEE Int. Conference on Robotics
and Automation, volume 2, pages 46–51, 1993.

[4] D. E. Culler and J. P. Singh. Parallel Computer
Architecture. Morgan Kaufmann, S F, 1999.

[5] B. Curto, V. Moreno, and F. J. Blanco. A gen-
eral method for c-space evaluation and its appli-
cation to articulated robots. IEEE Transactions
on Robotics and Automation, 18(1):24–31, 2002.

[6] I. Foster. Designing and Building Parallel Pro-
grams. Concepts and Tools for Parallel Software
Engineering. Addison-Wesley P.C., 1995.

[7] D. Henrich. Fast motion planning by parallel
processing. a review. Journal of Intelligent and
Robotic Systems, 20(1):45–69, 1997.

[8] Lydia E. Kavraki. Computation of configura-
tion space obstacles using the fast fourier trans-
form. IEEE Tr. on Robotics and Automation,
11(3):408–413, 1995.

[9] J. C. Latombe. Robot motion planning. Kluwer
Academic Publishers, Boston, MA, 1991.

[10] T. Lozano-Pérez. Spatial planning: A configura-
tion space approach. IEEE Transactions on Com-
puters, 32:108–120, 2 1983.

[11] T. Lozano-Pérez and P.O’Donnell. Parallel robot
motion planning. In Proc. of the IEEE Int. Conf.
on Robotics and Automation, pages 1000–1007,
1991.

[12] R. Thern, Francisco Javier Blanco, Beln Curto,
and Vidal Moreno. Evaluation of the configu-
ration space of robots upon a distributed com-
puting system. In Proceedings of the IEEE-IFAC
European Control Conference, Porto, Portugal,
september 2001.

[13] R. Theron, F. J. Blanco, B. Curto, V. Moreno,
and F. J. Garćıa. Parallelism and robotics: The
perfect marriage. ACM Crossroads, 8.3 Parallel
computing, 2002.

